ABSTRACT

CURRIE, KEVIN SCOTT. Factoring Large Numbers: Stealing Your Secrets.
(Under the direction of Dr. E. L. Stitzinger.)

The purpose of this research has been to explore the methods and
techniques currently used to factor large numbers. The RSA cryptosystem
employs large numbers which are the product of two primes to encrypt and
decrypt private messages. In order to break these codes, the first step is to
factor the large public integer n into its two primes. Although there are
many methods to factor these large integers, most are time consuming and
may take decades or centuries to complete. The algorithms undertaken in
this project are the predominate methods in use today and include the
Pollard p-1 and the Quadratic Sieve. These methods are powerful and have
the ability to factor large numbers. In order to accomplish these algorithms,
the brute force method and the pseudoprime tests must be implemented and
they are included in the research as well. The paper includes the methods
for an intruder to steal the information sent over insecure lines of
communication. In addition, it instructs the order in which the intruder
should attempt to break the code, starting with the easiest methods first and

then moving to more complicated and time consuming techniques.
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1. Introduction

With the creation of ENIAC, and the onset of the computer age,
humans achieved the ability to add and multiply numbers quickly;
unfortunately, it required an entire room to perform these operations.
Currently, entering the twenty-first century, not only can computers handle
large and complicated tasks, but they are found in the majority of American
households. Connecting these computers, the internet provides a
remarkable ability for people to transmit information rapidly.

This is seen in the recent increase of online banking. In 1995, the
number of U.S. households banking online was 800,000; two years later, in
1997 the number rose to 4.5 million. With ease of use, households are
beginning to prefer banking using the internet. Additionally, banks prefer
this method; for a bank to process an in-person transaction, it requires an
average cost of $1.07 while an internet transaction only costs $0.01. Online
usage is not restricted to banking, retail sales steadily increase as more
Americans shop using their computers. In 1997, electronic retail revenue
amounted to $3.3 billion. One year later, that number jumped 60% to $5.3
billion. It is estimated that in America, 760 households join the internet
every hour. Financial transactions over the internet will only increase in the
coming years.

For this increase to take place, consumers must be confident that the

information they send will be secure. As the internet transmits over
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standard phone lines, the 1’s and 0’s sent are easily intercepted. This
presents an interesting problem. How are these messages transmitted so
that only the desired recipient wiil be able to read them? Are these
encryption methods secure?

The study of cryptography creates methods to ensure the information
sent will be secure and also attempts to break the codes. For any encryption
method to be secure, it must be easier to create the technique than to break it.
Currently, this is certainly true for the RSA technology. So the interesting

aspect is: how is it broken?

2. RSA Encryption

RSA was published in 1978 by Rivest, Shamir, and Adleman, who also
share the namesake. As a public-key cryptosystem, the encryption
parameters are made public and are thus easily known to intruders. Yet this
does not compromise the security of the transmissions. The first thing to
know is how RSA works. The basic method is rather simple, the receiver
chooses two distinct primes, p and q. The larger the values of p and q, the
more secure the system becomes. Next, calculate n = p*q and m = (p-1)(g-1).
Finally, an a <m is chosen such that a and m are relatively prime and b <m
such that a*b = 1 mod m. The receiver then makes both a and n public and

keeps b secure.
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The sender converts the message text using some known mapping.
Next, the sender raises the converted message to the power a and reduces

modulo n. This is now sent over the insecure line of communication. The

intended receiver raises the message to the power b and reduces modulo n.

Now the receiver has the correct message - as x @ = x mod n - and no
intruder can read the message without the decipher key b.

How does this cryptosystem keep the message safe? The key lies in
the ability to easily generate large prime integers, while it is much more
difficult to factor the product of those two large primes. The larger the
primes, the harder to factor. As computers become faster and faster, the
security of the system can be strengthened by simply increasing the size of
the two primes.

So how do you factor the public integer n?

3. Factorization

As the integer n is public knowledge, and it is known that it is the

3

product of two primes, it must be possible to find those two primes from the

knowledge of n. If those primes are found, then determining b from the

public a is relatively easy, and the system is compromised. Fortunately,

given any integer, the fundamental theorem of arithmetic guarantees that the

factorization into primes is unique up to order. Thus, given n, it can be

factored completely and the intruder can steal the message.
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Starting the process of factorization, the intruder uses the least
complicated techniques first and then moves to more complicated methods.
The first step is to use brute force. Next they check if the integer is prime,
then moves to several other methods including the Pollard p-1 algorithm

and the Quadratic Sieve.

3.1 Brute Force

The integer to be factored is either a product of primes or itself a
prime. Simply dividing by all primes less than the integer will factor
the number into its components. This method is guaranteed to work
and find all the prime factors. Unfortunately, this method requires
extraordinary time to complete since the number of primes less than an
integer n is asymptotically n/(logn). For instance, the number of
primes less than 10° is 50,847,478. Typically, the brute force is used to
find any factors less than say 10,000. If none are found, more powerful

algorithms are employed.

3.2 Primality Test

Coming to the next step, it is important to know the integer in
question is not prime. This is required as the remaining tests assume
the integer is not a prime. Thus, the following test based on Fermat’s

observation provides information on the primality of an integer. The

4
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theorem is as follows: if p is a prime which does not divide b, then bp-1
=1 (mod p). Unfortunately, there are composite integers n relatively
prime to b such that b»1=1 (mod n); these are said to be pseudoprimes
for the base b. Testing these numbers with different bases may show
the integers to be composite. Again, there are still composite integers
which are pseudoprimes for all bases to which they are relatively
prime. These numbers are called Carmichael numbers. In the interest
of factorization, the integer n needs only to fail one of the several tests

to insure it is not prime, and thus continue to the next step.

4. Pollard p-1

After factoring the small primes and ensuring the remaining integer is
not prime, the next technique to employ is the Pollard p-1 algorithm. This
method is also based on Fermat’'s Observation, and the theorem is as follows:
if p is an odd prime then 2P1=1 (mod p). The Pollard p-1 algorithm
assumes the integer n to be factored has a prime factor p with the property
that the primes dividing p-1 are small. The restriction placed on p is such
that p-1 divides 10000!. Then m = 210000! Mod n is computed. As p-1 divides
10000! then by the previous theorem, m is congruent to 1 modulo p, and thus
p divides m-1. Therefore, there is a good chance that n does not divide m-1

and then g = gcd (m-1, n) will be a non-trivial divisor. Additionally, this
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algorithm can be modified by changing the base, any number can be
substituted for 2.
The maple program for the Pollard p-1 is as follows:

n := (insert number to be factored)
c:=2
max := 10000;
m:=g;
for i from 1 to max do
m :=m & imod n:
if (i mod 10) = 0 then
g := gcd(m-1, n):
if g > 1 then
g

i=last+2:
fi;
fi;

od;

&

Although this algorithm is very powerful and can factor large
integers, it has drawbacks. First, the gcd might equal n. In this case, the base
c is changed to another number and the algorithm is implemented again.
Also, if p-1 has only large factors, the algorithm might cycle forever. If p is
the smallest prime dividing n, then the largest prime dividing p-1 is typically
the number of cycles the Pollard p-1 algorithm requires. In the algorithm,
max determines the number of cycles executed, with max set to 10000, the

algorithm will usually find any prime factors which are less than two

million. Increasing the cycles increases the size of the primes that can be

found, but that will increase the running time of the algorithm as well.
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5. Quadpratic Sieve

One of the more powerful algorithms, the Quadratic Sieve is
implemented after the small divisors have been found and the possibility of
factoring with the Pollard p-1 has been depleted. As with the Pollard p-1,
the integer in question must be composite, so the psuedoprime test must
have been used to ensure the number is still composite.

Maurice Kraitchik realized that if random x and y were found such
that x2 = y2 (mod n) then there is a 50-50 chance the gcd of n and x-y will be a
nontrivial factor of n. Thus, the Quadratic Sieve attempts to find the suitable
x and y. As this method is probabilistic, there is no guarantee that a factor
will be found, but the technique is more likely to factor large integers quicker
than other methods.

The first step in the Quadratic Sieve is to find a factor base and solve
the congruencies x2=n (mod p) for each p in the factor base. To find the
factor base, create the function, f(r) = r*r - n with domain r: k+1, k+2, . ..
where k is the floor of the square root of n. The goal is to find the f(r)’s that
factor into primes less than 10000. For a prime p less than 10000, p does not
divide n - brute force was used and no factors less than 10000 were found -
and if p divides f(r) then n = r2 (mod p). This collection of primes used to
divide f(r) is the factor base. To solve the quadratic congruencies, the

following algorithm can be implemented:
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INITIALIZE: READn, h, j, p
men
Ve h
W « (h*h - 2*m) mod p
CALL BINARY(j)

n is known to be a quadratic residue mod p. h is chosen so that h*—4n is not a
quadratic residue mod p. j is a positive integer, the last line converts j to binary

notation.

COMPUTE LOOP: FORk=t-1to 1 BY -1 DO
X < (v¥*w—h*m) MOD p
vV« (v*v-2%m) MOD p
W« (W¥*w —2*n*m) MOD p
m « m*m MOD p

IFby=0THEN w«Xx
ELSE DO

Ve X
m <« n*m MOD p

if'v is v and W is Vi1, then the new value of v is vy, then new value of W is vy +2,

and the new value of X is Vi +1. m keeps track of the power of n modulo p.

TERMINATE: WRITE v
BINARY(j): 1«0
WHILE j>0DO
1ei+1
b; «jMOD2
j L2l
te1i
RETURN

Return the values of t and b; to the caller

Once the factor base is found and the quadratic congruencies have
been solved, the next step is to perform the sieving operation to find

sufficient f(r)’s which can be completely factored over the factor base.

8
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Trying to factor 10000 integers over the factor base takes a considerable
amount of time, with larger n’s, the amount of integers increases. For
example, David M. Bressoud recommends checking over 1 million r’s if the n
to be factored is only 66 digits. Therefore, implementing the sieve reduces
the integers which are attempted to be factored.

For each f(r), if it is factorable over the factor base, then f(r) = p12! *p»%2
*psa3*. .. And thus, log f(r)=al*logp1+a2*logp2+a3*logps+... As
the quadratic residues have already been solved, n = t? or (-t)? (mod p).
Consequently, r is congruent to either t or -t modulo p, and thus p must
divide f(r). Now, after finding the first r congruent to t modulo p, f(r) and
every p'h f(r) thereafter is divisible by p. Additionally, the same is true for
the first r congruent to -t and every pth f(r). As the f(r)’s divisible by p are
known without doing any division, the running time is shortened
dramatically. Starting with a vector of zeros, add (log p) to the entry when p
divides the corresponding f(r)’s. When the vector entry is close to log f(r),
then it factors completely over the factor base. Calculating the log of each
~ £(r) will take considerable time, instead, choosing an average value will save
time. If the sieve is running over 2M values, then the logarithm of the
absolute value of ((V\n]- M + i)2 - n will be approximately TARGET = (log
n)/2 +log M. After the sieving is done, there will be few entries which are
sufficiently close to the TARGET that trial division over the factor base can

be accomplished quickly. To be close enough, Robert D. Silverman
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recommended setting CLOSENUF = TARGET - T*log(pmax) where pmaxis
the largest prime in the factor base and T is a constant near 2. Although this
modification misses a few values of r for which r2 - n factors completely, the
time saved more than compensates.

The last step in the Quadratic Sieve is to use Gaussian elimination to
find a product of the f(r)’s which is a perfect square. For each integer which
factors completely over the factor base, associate a binary vector the length
of the factor base which has 1 as an entry if the corresponding prime appears
as an odd power and a 0 if the prime is an even power. The matrix is formed
by the collection of these vectors as rows adjoined with an identity matrix
with as many columns as there are completely factorable integers. Perform
Gaussian elimination until a vector is found such that there are zeros in each
entry corresponding to a prime in the factor base. Each 1 in the remaining
portion of the vector informs that the product of the corresponding f(r)’s is a
perfect square. Therefore, multiplying the squared r’s together will be
congruent to the product of the factored f(r)’s (mod n). And thus, the two
square terms x and y have been found. The next step is to find the ged of x -
y and n. About 50% of the time, the gcd is 1 or n and no new information is
found, but with many entries in the matrix, it is likely that one will work.

With the Quadratic Sieve, large integers can be factored more
efficiently than with brute force. The first and last of the three steps run

quickly; it is the middle step, the sieve, where most of the computer time
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will be spent. There are some modifications which may make the sieve
faster. One such modification is to use a different f(r). Actually, the
recommendation is to use several computers each with different f(r)’s

checking a smaller range of r’s.

6. Summation

Generating two large prime numbers is an easy task, factoring the
product of those same two prime numbers is currently far more difficult.
Thus, RSA keeps the secrets of the sender and receive safe. The above
methods to factor the public key n still takes considerable time as n gets
larger and larger. As computers become faster as well, the time required to
perform the algorithms will decrease, keeping n constant. To overcome this,
the information encrypted simply employs larger primes. But, this presents
a problem if the message to be sent is intended to be kept secret for an
extended period. An intruder who intercepts a message currently may not
be able to decrypt the message, but given time and advances in computer
technology, the message can certainly be cracked. Following the above
methods, including brute force, Pollard p-1, and the Quadratic Sieve, the
intruder is armed to steal. But it is the resourceful thief who will create new
and better methods of factoring these large public integers, for two people

cant keep a secret.
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